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Abstract. Aim of this work is to extend the results obtained in a previous study on the magnetic
confinement and stability of a quantum degenerate non-neutral fermion plasma. This extension
consists in the inclusion in the previously set up model of the effects of the exchange forces, and
gencralises the Thomas-Fermi (TF) approach used in the referenced work towards a Thomas-
Fermi-Dirac (TFD) statistical description. The TF model has not only been used extensively and
with success in these years to study atomic, nuclear and molecular properties, or to evaluate
features of matter in extreme conditions such as low temperatures and/or high densities typical
of astrophysics and inertial confinement fusion experiments, but also to found hydrodynamic
theories for the diffusion and stability of fermion plasmas, one component non-neutral
degenerate fluids, plasmas etc. In this paper an equation for density profiles in cylindrical
symmetry is found, from the semiclassical kinetic theory of quantum gases, which takes into
account the effects of temperature, average velocity, external magnetic field and quantum
exchange. Numerical solutions of this equation for the case of complete quantum degeneracy are
given and comparisons with the previous results are carried out.

INTRODUCTION

A many-body charged particle system in which there is not overall charge neutrality
can have, as has been shown since the early '70s, collective oscillations and
excitations as well as shielding and screening effects [I]; this many-body collection of
charged particles is therefore termed a non-neutral plasma (NNP). In certain physical
situations the NNP is in such conditions that also global effects of quantum nature are
present and observable [2,3,4]. These conditions, which append the adjective
"degenerate" to an NNP, are realized when the average distance between neighboring

particles is of the order of the dimension of the quantum wave field of the particles

themselves [5] (de Broglie length); this in turn depends on the number density and
temperature of the plasma itself: the lower the temperature and the higher the density,
the higher quantum effects are and more and more degenerate the NNP is. Shielding is
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highly affected by quantum effects and the screening of the potentials, with its
influence on the spatial dependence of density, is a main subject of this paper. In this
work, in fact, the results of a previous study [6] on the magnetic confinement and
stability of a quantum degenerate fermion NNP in the presence of external forces are
extended by including the role of exchange potentials on the particles; the extension
consists then in taking the description from a Thomas-Fermi level to a Thomas-Fermi-
Dirac one. Density profiles in cylindrical coordinates and symmetry will be computed
for a completely degenerate electron NNP. Semiclassical kinetic theory of gases, i.e.
the Boltzmann-Uehling-Uhlenbeck (BUU) equation, and quantum statistics in the
form of the Fermi statistics are the starting point for this analysis.

THE MODEL

For the case of an electron gas the BUU equation for the electron distribution
fUnction fcan be written 14,61 as

af, 1) •J
+v• f + F .. v (f'f" (-1 - f)(I - yf )-ff il- ')( 1-' yf ))gor(g,')df~dv,

at dr ni av
(I)

h3
where '= 2•.. Since a stationary solution with density vanishing at infinity is

expected, the form off is known to be a local Fermi distribution [7], for which the
collision term of eq. (I) is vanishing; it is more convenient then to make use of the H
theorem and consequently write the equation in the structure adequate for the
logarithm of the distribution function 171; if a finite average velocity vo must also be
taken into account, then eq. (I) reduces to:

(VO +c). alnf + -F _ v, .voI• =0 (2)
a r " n arr ac Dr

where c is the peculiar velocity. Introducing, the local Fermi distribution function

2 , -) !,,,,_1 (3)

A(r)e20:(r) + 1 2 __r_, +e +!

into eq. (2) the following equation is obtained:

__2kT r mn- a C T mFA c Jv°M ... : V C . A 2W. )r Mr Dr U : oddr kTT2 r r
eU +_I ý +-I

(4)
If eq. (4) is to be satisfied then all the coefficients of successive powers of the

peculiar velocity between square brackets must identically vanish; hence:
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mA av ao A 0 A-- cc":vo .-- =0 = V0 I- (5a,b)
kT ar ' r ar

A c'==0 = =0, -A+ A (F-mV (5c,d)
CkT2  Tr r kTT

These equations are as general as eq. (4) but are indeed extremely useful; in
particular eq. (5c) states that the temperature must be constant and eq. (5d) establishes
an equilibrium relation between the various external and internal forces acting over the
gas. It also provides a relation between the chemical potential t and all other forces.

We consider now an electron gas, in condition of cylindrical symmetry with respect
to z axis, described through cylindrical coordinates r = [r, t9, z]. The external force is
given by a constant and uniform magnetic field along the symmetry axis, B = Bz ; the
remaining internal force is given by the self-consistent Vlasov electric field. Under
these conditions all the quantities in eq. (5d) will depend at most on r alone. This
allows a simple form of vo to be found through eq. (5a); taking into account that to
have stable equilibrium no radial velocity must be present, we have that
V,• = voz + o) x r, where 0) = (oz is a constant vector, directed along the symmetry

axis, representing an angular velocity for the gas. Now, inserting this expression and
the Lorentz force into eq. (5d), only a scalar equilibrium equation that connects the
gradient of the chemical potential, the Lorentz force and the centrifugal force remains:

kT(d n A)- e (E, + (orB)+ m 2r = 0 (6)
dr

dV
Expressing the electric field as E, =-- -, with as b.c. limro.a V(r)= 0, we get:

/u(r, T) =,u (0, T)+ e V(r)+ I m o(coa - o, )r2(7)
2

where p (0, T) is the chemical potential for an uniform and homogeneous electron gas

14,5,8,9,10], i.e. the value of the chemical potential when no forces are present, and
eB

co, - is the cyclotron frequency, representative of the external magnetic field. The

electric potential exchange effects, of purely quantum nature, are taken into account,
in the simplest way, through the Dirac and Slater formalism [8,9,10,11,12], by adding
to eq. (7) a suitable term proportional to the cubic root of the local particle density
(local density approximation, LDA), as happens in the usual Thomas-Fermi-Dirac,
TFD, theory of atoms. This means that it is assumed here an equal number of upward-
and downward- oriented spins. In this way the repulsive effects between electrons of
parallel spins, generating the s.c. "Fermi hole" or "exchange hole" around a generic
test particle, are considered; however, attractive effects due to other kinds of
correlations (f.i. attraction between antiparallel spins) are not included. Of the many
relativistic or non-relativistic LDA models [13] the non-relativistic Dirac-Slater, DS,
one has been chosen because of its simplicity, both from a mathematical point of view
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and from the physical one. The fact that it is not a relativistic potential is coherent with
the other assumptions of the present model. In addition, as it happens with other
exchange potentials, the DS one can easily be related to variational forms and inserted
in the larger theoretical frame of density functional methods. In fact the DS potential
can be derived from the following density functional:

E' n]: -C= _ n4'" (r)dr (8)
wheein I nit, _3 e2 -( 3 -],3

where, in SI units, C.8. =-- So, the DS exchange potential is simply:
4 41wr, ( 87r)

W e2 (3n(r) /3

WA8 )r (9)

It must be observed here that the rhs of eq. (9) cannot be added directly to eq. (7),
as is usually done in the TFD method; in fact, in the present model, eq. (7) is naturally
linked to the condition, different from the usual TFD one and deriving from the above
stated b.c. for V(r), that for r--0÷ the fermions must posses the characteristics of an
uniform and homogeneous gas; because n(0)# 0 then a very important normalizing
term must also be added, so that eq. (7) finally becomes:

,u(r,T)=tu(O,T)+eV(r)+Im v(co-o))r 2 _ e" (3n(r) 1/3 e- n /3

2 4-,, 81r 4re 8 8;)

Inserting eq. (10) into the Fermi distribution function and integrating over all the
velocity space via Sommerfeld's Lemma at first order, one gets the following relation,
generalized to take into account finite temperature and average velocity:

8i * !~ 2I- 8
n (r )= 3- 2 m , e V (r )+ I w' w -o i )r 2 ,, e ' -

83

+ eV(r)+1mw(ow -o)r' +1,,- e',3(n(r) n(0))0 121

(II)
where u, =(0,0),-= E,. is the s.c. Fermi energy.

For the case of complete degeneracy (T=O) one gets from eq. (II):

an213 +br 2 +c+ dn113 -dn )/3 = eV (12)
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where n (0)= n,,, a =0, (3--b-M (c)a) ), c '0,

e ~2/
d =- >0. For r---0+ eq. (12) tends to ant,+ +c =0 which is the usual

expression for an uniform and homogeneous electron gas. Also, for d--ý0÷ eq. (12)
gives the simple TF equation in absence of exchange forces. Requiring now the self-
consistency of electron density and electric potential, imposing that eq. (12) satisfy
Poisson's equation, a non-linear equation for only the electron density remains:

n __I(ny n' n2/3 )(g

3n r (2/3 an"3 +1/3d n
e2

where g = - > 0, with particle number normalization and cylindrical symmetry b.c.:
E0

dn
him , _o n(r)= n()=n, lim,_, r=0. (14)

ANALYTICAL RESULTS

A solution vanishing at infinity for eq. (13) is obtainable if and only if [6] its rhs
near the origin is negative; this means that to have confinement it must be gn, < 4b,

independently of the value of d. This important result shows that exchange effects
don't alter at all the s.c. confinement region [6], hence they don't alter the value of the
confining necessary magnetic field too, for the considered gas at the given angular
velocity. Exchange effects do indeed alter the confinement radius for the gas, in the
direction of extending it above that of the purely TF model, as is to be expected, as
stated above, because of the presence of "Fermi holes".

NUMERICAL RESULTS, COMPARISONS AND DISCUSSION

Eq. (13) has been solved numerically. Figure 1 compares, at the same number
of confined particles per unit length, magnetic field and angular velocity, in doubly-
logarithmic scale, the TF and TFD density profiles. The role of the repulsive exchange
holes is distributed between the two effects of lowering the density at the origin of the
TFD solution and of increasing its confinement radius.

CONCLUSIONS

The quantum exchange effects between parallel-spinned electrons have been
included in a semiclassical model of a one-component, non-neutral, degenerate,
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ferm-ion plasma. The plasma rotates around its simmetry axis in a cylindrical
configuration and is magnetically confined. In this way the model has been extended
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FIGURE 1. Comparison between TF and TFD models for N=270 in", o) 4.2E+6 Hz and W,
8.OE+i4 Hz.

through a local density approximation from a TF description level to a TFD one, as it
happens f.i. for the electronic theory of atoms. The usual expression of the exchange
potential has been modified for the special needs of the model. The equation for the
density profile of the plasma has been solved numerically. It is seen that the s.c.
confinement region is not altered by the exchange effects, even if the confinement
radius becomes larger because of the repulsive effects of the "Fermi holes".
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